Sejarah Awal Teori Pembentukan Tata Surya


download 49.36 Kb.
jenengSejarah Awal Teori Pembentukan Tata Surya
KoleksiDokumen
a.kabeh-ngerti.com > Astronomi > Dokumen

Sejarah Awal Teori Pembentukan Tata Surya


Oktober 5, 2006 in astronomy
Sebuah teori lahir dari keingintahuan akan suatu kejadian atau keadaan. Tidak mudah untuk mempercayai sebuah teori baru, apalagi jika teori tersebut lahir ditengah kondisi masyarakat yang memiliki kepercayaan yang berbeda. Tapi itulah kenyataan yang harus dihadapi oleh para ilmuwan di awal-awal penemuan mereka.

Hal utama yang dihadapi untuk mengerti lebih jauh lagi tentang Tata Surya adalah bagaimana Tata Surya itu terbentuk, bagaimana objek-objek didalamnya bergerak dan berinteraksi serta gaya yang bekerja mengatur semua gerakan tersebut. Jauh sebelum Masehi, berbagai penelitian, pengamatan dan perhitungan telah dilakukan untuk mengetahui semua rahasia dibalik Tata Surya.

Pengamatan pertama kali dilakukan oleh bangsa China dan Asia Tengah, khususnya dalam pengaruhnya pada navigasi dan pertanian. Dari para pengamat Yunani ditemukan bahwa selain objek-objek yang terlihat tetap di langit, tampak juga objek-objek yang mengembara dan dinamakan planet. Orang-orang Yunani saat itu menyadari bahwa Matahari, Bumi, dan Planet merupakan bagian dari sistem yang berbeda. Awalnya mereka memperkirakan Bumi dan Matahari berbentuk pipih tapi Phytagoras (572-492 BC) menyatakan semua benda langit berbentuk bola (bundar).

Sampai dengan tahun 1960, perkembangan teori pembentukan Tata Surya bisa dibagi dalam dua kelompok besar yakni masa sebelum Newton dan masa sesudah Newton.

Permulaan Perhitungan Ilmiah
Perhitungan secara ilmiah pertama kali dilakukan oleh Aristachrus dari Samos (310-230 BC). Ia mencoba menghitung sudut Bulan-Bumi-Matahari dan mencari perbandingan jarak dari Bumi-Matahari, dan Bumi-Bulan. Aristachrus juga merupakan orang pertama yang menyimpulkan Bumi bergerak mengelilingi Matahari dalam lintasan berbentuk lingkaran yang menjadi titik awal teori Heliosentrik. Jadi bisa kita lihat kalau teori heliosentrik bukan teori yang baru muncul di masa Copernicus. Namun jauh sebelum itu, Aristrachrus sudah meletakkan dasar bagi teori heliosentris tersebut.

Pada era Alexandria, Eratoshenes (276-195BC) dari Yunani berhasil menemukan cara mengukur besar Bumi, dengan mengukur panjang bayangan dari kolom Alexandria dan Syene. Ia menyimpulkan, perbedaan lintang keduanya merupakan 1/50 dari keseluruhan revolusi. Hasil perhitungannya memberi perbedaan sebesar 13% dari hasil yang ada saat ini.

Ptolemy dan Teori Geosentrik
Ptolemy (c 150AD) menyatakan bahwa semua objek bergerak relatif terhadap bumi. Dan teori ini dipercaya selama hampir 1400 tahun. Tapi teori geosentrik mempunyai kelemahan, yaitu Matahari dan Bulan bergerak dalam jejak lingkaran mengitari Bumi, sementara planet bergerak tidak teratur dalam serangkaian simpul ke arah timur. Untuk mengatasi masalah ini, Ptolemy mengajukan dua komponen gerak. Yang pertama, gerak dalam orbit lingkaran yang seragam dengan periode satu tahun pada titik yang disebut deferent. Gerak yang kedua disebut epycycle, gerak seragam dalam lintasan lingkaran dan berpusat pada deferent.

Teori heliosentrik dan gereja
Nicolaus Copernicus (1473-1543) merupakan orang pertama yang secara terang-terangan menyatakan bahwa Matahari merupakan pusat sistem Tata Surya, dan Bumi bergerak mengeliinginya dalam orbit lingkaran. Untuk masalah orbit, data yang didapat Copernicus memperlihatkan adanya indikasi penyimpangan kecepatan sudut orbit planet-planet. Namun ia mempertahankan bentuk orbit lingkaran dengan menyatakan bahwa orbitnya tidak kosentrik. Teori heliosentrik disampaikan Copernicus dalam publikasinya yang berjudul De Revolutionibus Orbium Coelestium kepada Paus Pope III dan diterima oleh gereja.

Tapi dikemudian hari setelah kematian Copernicus pandangan gereja berubah ketika pada akhir abad ke-16 filsuf Italy, Giordano Bruno, menyatakan semua bintang mirip dengan Matahari dan masing-masing memiliki sistem planetnya yang dihuni oleh jenis manusia yang berbeda. Pandangan inilah yang menyebabkan ia dibakar dan teori Heliosentrik dianggap berbahaya karena bertentangan dengan pandangan gereja yang menganggap manusialah yang menjadi sentral di alam semesta.

Lahirnya Hukum Kepler
Walaupun Copernicus telah menerbitkan tulisannya tentang Teori Heliosentrik, tidak semua orang setuju dengannya. Salah satunya, Tycho Brahe (1546-1601) dari Denmark yang mendukung teori matahari dan bulan mengelilingi bumi sementara planet lainnya mengelilingi matahari. Tahun 1576, Brahe membangun sebuah observatorium di pulau Hven, di laut Baltic dan melakukan penelitian disana sampai kemudian ia pindah ke Prague pada tahun 1596.

Di Prague, Brahe menghabiskan sisa hidupnya menyelesaikan tabel gerak planet dengan bantuan asistennya Johannes Kepler (1571-1630). Setelah kematian Brahe, Kepler menelaah data yang ditinggalkan Brahe dan menemukan bahwa orbit planet tidak sirkular melainkan elliptik.

Kepler kemudian mengeluarkan tiga hukum gerak orbit yang dikenal sampai saat ini yaitu ;

  1. Planet bergerak dalam orbit ellips mengelilingi matahari sebagai pusat sistem.

  2. Radius vektor menyapu luas yang sama dalam interval waktu yang sama.

  3. Kuadrat kala edar planet mengelilingi matahari sebanding dengan pangkat tiga jarak rata-rata dari matahari.

Kepler menuliskan pekerjaannya dalam sejumlah buku, diantaranya adalah Epitome of The Copernican Astronomy dan segera menjadi bagian dari daftar Index Librorum Prohibitorum yang merupakan buku terlarang bagi umat Katolik. Dalam daftar ini juga terdapat publikasi Copernicus, De Revolutionibus Orbium Coelestium.

Awal mula dipakainya teleskop
Pada tahun 1608, teleskop dibuat oleh Galileo Galilei (1562-1642), .Galileo merupakan seorang professor matematika di Pisa yang tertarik dengan mekanika khususnya tentang gerak planet. Ia salah satu yang tertarik dengan publikasi Kepler dan yakin tentang teori heliosentrik. Dengan teleskopnya, Galileo berhasil menemukan satelit-satelit Galilean di Jupiter dan menjadi orang pertama yang melihat keberadaan cincin di Saturnus.

Salah satu pengamatan penting yang meyakinkannya mengenai teori heliosentrik adalah masalah fasa Venus. Berdasarkan teori geosentrik, Ptolemy menyatakan venus berada dekat dengan titik diantara matahari dan bumi sehingga pengamat dari bumi hanya bisa melihat venus saat mengalami fasa sabit.

Tapi berdasarkan teori heliosentrik dan didukung pengamatan Galileo, semua fasa Venus bisa terlihat bahkan ditemukan juga sudut piringan venus lebih besar saat fasa sabit dibanding saat purnama. Publikasi Galileo yang memuat pemikirannya tentang teori geosentrik vs heliosentrik, Dialogue of The Two Chief World System, menyebabkan dirinya dijadikan tahanan rumah dan dianggap sebagai penentang oleh gereja.

Dasar yang diletakkan Newton
Di tahun kematian Galileo, Izaac Newton (1642-1727) dilahirkan. Bisa dikatakan Newton memberi dasar bagi pekerjaannya dan orang-orang sebelum dirinya terutama mengenai asal mula Tata Surya. Ia menyusun Hukum Gerak Newton dan kontribusi terbesarnya bagi Astronomi adalah Hukum Gravitasi yang membuktikan bahwa gaya antara dua benda sebanding dengan massa masing-masing objek dan berbanding terbalik dengan kuadrat jarak antara kedua benda. Hukum Gravitasi Newton memberi penjelasan fisis bagi Hukum Kepler yang ditemukan sebelumnya berdasarkan hasil pengamatan. Hasil pekerjaannya dipublikasikan dalam Principia yang ia tulis selama 15 tahun.

Teori Newton menjadi dasar bagi berbagai teori pembentukan Tata Surya yang lahir kemudian, sampai dengan tahun 1960 termasuk didalamnya teori monistik dan teori dualistik. Teori monistik menyatakan bahwa matahari dan planet berasal dari materi yang sama. Sedangkan teori dualistik menyatakan matahari dan bumi berasal dari sumber materi yang berbeda dan terbetuk pada waktu yang berbeda.


sumber : The Origin and Evolution of the Solar System (M. M. Woolfson)

artikel terkait
Teori Pembentukan Tata Surya Sesudah Newton
Teori Pembentukan Tata Surya Awal Abad ke-20

Alkana
Hidrokarbon jenuh yang paling sederhana merupakan suatu deret senyawa yang memenuhi rumus umum CnH2n+2 yang dinamakan alkana atau parafin. Suku perfama sampai dengan 10 senyawa alkana dapat anda peroleh dengan mensubstitusikan harga n dan tertulis dalam tabel berikut.

Suku pertama sampai dengan 10 senyawa alkana

Suku ke

n

rumus molekul

nama

titik didih
(°C/1 atm)

massa 1 mol dalam g

1

1

CH4

metana

-161

16

2

2

C2H6

etana

-89

30

3

3

C3H8

propana

-44

44

4

4

C4H10

butana

-0.5

58

5

5

C5H12

pentana

36

72

6

6

C6H14

heksana

68

86

7

7

C7H16

heptana

98

100

8

8

C8H18

oktana

125

114

9

9

C9H20

nonana

151

128

10

10

C10H22

dekana

174

142

Selisih antara suku satu dan suku berikutnya selalu sama, yaitu -CH2 atau 14 satuan massa atom, sehingga seperti suatu deret dan disebut deret homolog (deret sepancaran). Ternyata banyak senyawa-senyawa karbon yang merupakan deret seperti alkana seperti yang akan kita pelajari nanti. Bagaimana kita dapat memberi nama pada suku-suku alkana, untuk itu perhatikan nama setiap suku itu dan nama umum. Umpamanya, metana dan alkana apanya y yang sama? Akhiran -ana, jadi alk- diganti dengan met- untuk suku pertama, suku kedua dengan et-, suku ketiga dengan prop-, suku keempat dengan but-, mulai suku kelima dan seterusnya diberi awalan angka-angka Latin; pent- untuk 5, heks- untuk 6, hept- untuk 7, okt- untuk 8, non- untuk 9, dan dek- untuk 10. Hasil penamaan sudah dapat anda lihat pada tabel di atas. Anda harus betul-betul menguasai nama-nama dari kesepuluh alkana yang sederhana ini karena akan merupakan dasar bagi penamaan senyawa-senyawa karbon lainnya.

Alkana-alkana penting sebagai bahan bakar dan sebagai bahan mentah untuk mensintesis senyawa-senyawa karbon lainnya. Alkana banyak terdapat dalam minyak bumi, dan dapat dipisahkan menjadi bagian-bagiannya dengan distilasi bertingkat. Suku pertama sampai dengan keempat senyawa alkana berwujud gas pada temperatur kamar. Metana biasa disebut juga gas alam yang banyak digunakan sebagai bahan bakar rumah tangga/industri. Gas propana, dapat dicairkan pada tekanan tinggi dan digunakan pula sebagai bahan bakar yang disebut LPG (liquified petroleum gas). LPG dijual dalam tangki-tangki baja dan diedarkan ke rumah-rumah. Gas butana lebih mudah mencair daripada propana dan digunakan sebagai "geretan" rokok. Oktana mempunyai titik didih yang tempatnya berada dalam lingkungan bahan bakar motor. Alkana-alkana yang bersuhu tinggi terdapat dalam kerosin (minyak tanah), bahan bakar diesel, bahan pelumas, dan parafin yang banyak digunakan untuk membuat lilin.

Bagaimana sifat-sifat senyawa karbon yang termasuk dalam satu deret homolog? Perhatikan tabel di atas di mana terdapat salah satu sifat, yaitu titik didih. Titik didih semakin tinggi jika massa molekul relatifnya makin besar. Hal ini berarti wujudnya akan berubah pada suhu kamar dari gas ke cair kemudian padat. Kecenderungan sifat apa lagi yang dapat anda ramalkan?

Dalam kimia karbon adalah panting bagi kita untuk dapat menuliskan rumus molekul dan rumus struktur. Rumus molekul menyatakan banyaknya atom setiap unsur yang ada dalam suatu molekul. Sedangkan rumus struktur menggambarkan bagaimana atom-atom itu terikat satu sama lain. Karena atom karbon merupakan tulang punggung dari semua senyawa karbon, maka kita harus mampu menggambarkan rangka karbon dalam suatu molekul senyawa karbon. Setiap atom karbon dikelilingi secara tetrahedral oleh atom-atom terikat dalam gambaran tiga dimensi, tetapi biasanya molekul-molekul senyawa karbon cukup digambarkan dengan gambaran dua dimensi saja.

H
|
H - C - H
|
H
           rumus struktur metana (gambar 2 dimensi)

Nama

Formula (rumus)

Formula struktural

metana

CH4

H
|
H - C - H
|
H

etana

C2H6

HH
||
H - C - C - H
||
HH

propana

C3H8

HHH
|||
H - C - C - C - H
|||
HHH

butana

C4H10

HHHH
||||
H - C - C - C - C - H
||||
HHHH

Sifat alkana sebenarnya berhubungan dengan rantai struktural molekulnya. Bila rantai karbon panjang atau bercabang, maka setelah anda buat rangka atom karbonnya tinggal membubuhkan atom-atom hidrogen pada ikatan atom karbon yang masih kosong.

contoh : molekul butana


||||
- C - C - C - C -
||||

            sekarang anda tinggal membubuhkan atom-atom hidrogennya

HHHH
||||
H - C - C - C - C - H
||||
HHHH

Kalau anda membuat molekul butana dengan molymod, terlihat bahwa rantai karbonnya tidak benar-benar lurus seperti rumus strukturnya, karena atom karbon tetrahedral mencegah gambaran rantai karbon lurus. Kebanyakan yang kita tuliskan adalah rumus struktur yang lebih sederhana lagi yaitu:

CH3 - CH2 - CH2 - CH3 atau CH3CH2CH2CH3

Jadi asal terbaca rantai karbonnya, itulah yang akan kita gunakan selanjutnya asal selalu ingat bahwa sesungguhnya adalah gambaran ruang.

Share ing jaringan sosial


Similar:

Sejarah Awal Teori Pembentukan Tata Surya

Menganalisa sejarah pembentukan bumi, tata surya dan jagat raya

Teori terbentuknya tata surya

Alam semesta dan tata surya

Banyak Tata Surya Lain di Alam Semesta

Tata Surya Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Tata Surya (kosmografi) Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Teori muncul dan berkembangnya manusia dan masyarakat paling awal di Indonesia

Dinasti Fatimiyah, Sejarah Awal Perselisihan Islam Syiah Dan Sunni

Matahari atau juga disebut Surya (dari nama Dewa Surya ± Dewa Matahari...

Astronomi


Nalika Nyalin materi nyedhiyani link © 2000-2017
kontak
a.kabeh-ngerti.com
.. Home